

Progenesis CoMet

Concepts and challenges of Metabolomics data analysis.

Mark Bennett – General Manager

24th July, 2013

Copyright Nonlinear Dynamics

Background of Nonlinear Dynamics

- We develop innovative high quality data analysis software for proteomics and metabolomics to help you:
 - Achieve breakthroughs and increase scientific understanding
 - Make real discoveries that you can pursue with confidence, leading to improvements in life quality for everyone
- Founded 1989 with head office in Newcastle upon Tyne, UK
 - US office based in Raleigh Durham, North Carolina

Nonlinear Dynamic

Progenesis[™] Concepts

- Based on a common concept, solving the key challenges in relative quantification
 - Progenesis LC-MS & Progenesis CoMet also benefit from a quantify-thenidentify approach
- Developed with key opinion leaders within proteomics and metabolomics
- 3. Adopted and proven across many labs around the world

Products:

- Progenesis SameSpots for 2D gel based proteomics
- Progenesis LC-MS for MS-based proteomics
- Progenesis CoMet for MS-based metabolomics
- Progenesis MALDI for MS-based proteomics

© Nonlinear Dynamics

Goal of metabolomics discovery?

"To identify the <u>compounds</u> that warrant further investigation as <u>rapidly</u>, <u>objectively</u> and <u>reliably</u> as possible."

- Progenesis CoMet developed with this in mind...
 - Produce a comprehensive table of detected compounds, which you can easily share or validate and put them in biological context
 - A complete analysis approach to combine quantification and identification of significantly changing compounds, in **one streamlined package**
 - An **objective approach** to analysis, using a complete matrix of data with no missing values, for results based on **reliable statistics**

© Nonlinear Dynamics

Relative quantification of metabolites

- LC-MS (ESI) is one technique used for such quantification
- Examples of applications:
 - Discovery relative changes in metabolite abundance related to experimental conditions
 - Targeted monitoring the relative abundances of numerous known compounds simultaneously

nonlinear

© Nonlinear Dynamics

Key steps in metabolomics discovery

- Relative quantification of metabolites
 - RT data alignment
 - Peak picking including ion deconvolution
 - Quality control, particularly of LC and quant
 - Data normalisation
 - Statistical analysis

- Identification
 - Several approaches (e.g. m/z, neutral mass, ± RT, ± MS/MS spectra)
 - No standardised search engine
 - Search against in-house or evolving public databases
 - Numerous putative ID's

O Nonlinear Dynamic

Challenges of current analysis approaches

- 1. Many separate analysis tools and databases are used, with manual intervention to move data from one stage to the next
- 2. Little opportunity to visually explore the data
- 3. You can quantify something that hasn't been identified, and identifications can be ambiguous
- 4. Discovery experiment needs not as well served as those of a more targeted metabolomics approach, which typically start with knowing what you are after
- 5. Missing values in the data reduce reliability of statistical tests
- Not easy to provide a final list of putative compounds for validation and review by biologists
- 7. And yours?

Progenesis CoMet workflow schematic

Import Data

Retention time alignment

Normalise

Co-detect, Quantify and Normalise

Collate ion forms

Review + Report

Review + Report

The challenge of missing values

- What are missing values?
 - Any feature that is not matched in every replicate in the experiment

Ref. S	pi	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04
	SA	Spot																	
228	228	196			208				231	223				185	182				448
235	235	-	235	-	-	-	-	163	-	-	-	-	170	189	-	-	-	-	-
241	241	202	-	208	226	225	207	231	237	231	159	196	193	-	-	-	-	186	219
242	242	219	-	-	-	-	-	225	-	232	-	-	201	214	-	201	-	-	221
263	263	-	263	249	-	-	241	-	281	269	-	-	-	267	270	249	-	224	-
262	262	262	262	-	-	-	-	-	-	273	-	-	-	-	264	-	-	-	-
255	255	229	255	-	-	-	-	-	-	272	-	208	-	232	-	-	-	-	226
256	256	-	256	-	246	-	209	265	-	267	208	-	221	253	-	222	-	-	-
271	271	232	-	-	-	-	-	272	270	275	-	222	228	261	260	234	178	217	-

- This is a problem because of the effect on various statistical tools which impact the conclusions drawn
 - Reduced power of the statistical tools

© Nonlinear Dynam

Fragmentation support for identification

- **Search SDF databases** using neutral mass, m/z, adduct mass, fragment ion and retention time
- Return putative identifications with fragment ion matches displayed

Capture publication-quality images

- Work through your analysis adding images and tables to a clip gallery
- Select high quality images for publications, posters and presentations
 - Saved as high resolution .png files (300 dpi)

